organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(2,3-Dimethylphenyl)succinamic acid

B. S. Saraswathi, a Sabine Foro, B. Thimme Gowda at and Hartmut Fuess b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 13 December 2010; accepted 16 December 2010

Key indicators: single-crystal X-ray study; T = 299 K; mean $\sigma(C-C) = 0.003 \text{ Å}$; R factor = 0.064; wR factor = 0.183; data-to-parameter ratio = 13.1.

In the title compound, $C_{12}H_{15}NO_3$, the conformations of N—H and C=O bonds in the amide segment are *anti* to each other and that of the amide H atom is *syn* to the *ortho*- and *meta*-methyl groups in the benzene ring. In the crystal, the molecules are linked into infinite chains through intermolecular O-H···O and N-H···O hydrogen bonds.

Related literature

For background to our study of the effect of ring and sidechain substitutions on the crystal structures of anilides, see: Gowda *et al.* (2010a,b,c). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). The packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed, see: Jagannathan *et al.* (1994).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_{12}H_{15}NO_3} & & a = 4.8379 \ (4) \ {\rm \mathring{A}} \\ M_F = 221.25 & & b = 10.0424 \ (6) \ {\rm \mathring{A}} \\ {\rm Triclinic}, \ P\overline{1} & & c = 11.9876 \ (8) \ {\rm \mathring{A}} \end{array}$

 $\begin{array}{lll} \alpha = 90.222 \ (6)^{\circ} & \text{Cu } K\alpha \ \text{radiation} \\ \beta = 99.614 \ (7)^{\circ} & \mu = 0.77 \ \text{mm}^{-1} \\ \gamma = 98.506 \ (6)^{\circ} & T = 299 \ \text{K} \\ V = 567.67 \ (7) \ \mathring{\text{A}}^3 & 0.40 \times 0.25 \times 0.10 \ \text{mm} \\ Z = 2 \end{array}$

Data collection

Enraf-Nonius CAD-4 1751 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.035$ 3962 measured reflections 3 standard reflections every 120 min 2017 independent reflections intensity decay: 0.5%

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.064 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.183 & \text{independent and constrained} \\ S=1.11 & \text{refinement} \\ 2017 \text{ reflections} & \Delta\rho_{\max}=0.42 \text{ e Å}^{-3} \\ 154 \text{ parameters} & \Delta\rho_{\min}=-0.31 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N1 - H1N \cdots O1^{i} \\ O2 - H2O \cdots O3^{ii} \end{array} $	0.87 (3)	2.04 (3)	2.909 (2)	174 (2)
	0.85 (3)	1.90 (4)	2.679 (2)	152 (3)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 3.

Data collection: *CAD-4-PC* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2264).

References

Enraf-Nonius (1996). *CAD-4-PC*. Enraf-Nonius, Delft, The Netherlands. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010*a*). *Acta Cryst*. E**66**, o394

Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010b). Acta Cryst. E66, o436.

Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010c). *Acta Cryst.* E66, 0908

Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.

Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.

supplementary m	aterials	

Acta Cryst. (2011). E67, o236 [doi:10.1107/S160053681005292X]

N-(2,3-Dimethylphenyl)succinamic acid

B. S. Saraswathi, S. Foro, B. T. Gowda and H. Fuess

Comment

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of anilides (Gowda *et al.*, 2010*a,b,c*), the crystal structure of *N*-(2,3-dimethylphenyl)-succinamic acid (I) has been determined. The conformations of N—H and C=O bonds in the amide segment are *anti* to each other (Fig. 1). The conformation of the amide oxygen and the carbonyl oxygen of the acid segment are almost midway between the *syn* and *anti* conformations, in contrast to the *anti* conformation observed in *N*-(2-methylphenyl)succinamic acid (II) (Gowda *et al.*, 2010*a*). Further, the conformation of the amide C=O bond is *anti* to the H atoms of its adjacent –CH₂ groups (Fig. 1) and that of the carbonyl oxygen of the acid segment is almost midway between the *syn* and *anti* conformations. The C=O and O—H bonds of the acid group are in *syn* position to each other, similar to that observed in (II) and (III).

The conformation of the amide hydrogen is *syn* to the *ortho*- and *meta*-methyl groups in the benzene ring, similar to that observed between the amide hydrogen and the *ortho*-methyl group in (II), but contrary to the *anti* conformation observed between the amide hydrogen and the *meta*-methyl group in the benzene ring of (III).

The intermolecular O—H···O and N—H···O hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan *et al.*, 1994).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,3-dimethylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,3-dimethylaniline. The resultant solid *N*-(2,3-dimethylphenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.

The prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the OH group and of the NH group were located in a difference map and their positions refined [O—H = 0.85 (3) Å, N—H = 0.87 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Figures

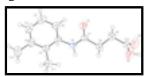


Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

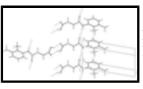


Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines

N-(2,3-Dimethylphenyl)succinamic acid

Crystal data

 $C_{12}H_{15}NO_3$ Z=2 $M_r = 221.25$ F(000) = 236Triclinic, PT $D_{\rm x} = 1.294 \; {\rm Mg \; m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54180 \text{ Å}$ Hall symbol: -P 1 a = 4.8379 (4) Å Cell parameters from 25 reflections $\theta = 5.9-22.4^{\circ}$ b = 10.0424 (6) Å c = 11.9876 (8) Å $\mu = 0.77 \text{ mm}^{-1}$ $\alpha = 90.222 (6)^{\circ}$ T = 299 K $\beta = 99.614 (7)^{\circ}$ Prism, colorless $\gamma = 98.506 (6)^{\circ}$ $0.40\times0.25\times0.10~mm$ $V = 567.67 (7) \text{ Å}^3$

Data collection

Enraf–Nonius CAD-4 diffractometer $R_{\rm int} = 0.035$ $R_{\rm int} = 0.035$ Radiation source: fine-focus sealed tube $\theta_{\rm max} = 66.9^{\circ}, \, \theta_{\rm min} = 3.7^{\circ}$ graphite $h = -5 \rightarrow 5$ $\omega/2\theta$ scans $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$ 2017 independent reflections $l = -14 \rightarrow 14$ 3 standard reflections every 120 min 1751 reflections with $l > 2\sigma(l)$ intensity decay: 0.5%

Refinement

S = 1.11

2017 reflections

154 parameters

0 restraints

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full

Hydrogen site location: inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.064$ H atoms treated by a mixture of independent and constrained refinement

 $wR(F^2) = 0.183$ $w = 1/[\sigma^2(F_0^2) + (0.1035P)^2 + 0.1611P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.003$

 $\Delta \rho_{\text{max}} = 0.42 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.025 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0305 (4)	0.17546 (19)	0.88221 (15)	0.0389 (5)
C2	0.0537 (4)	0.21089 (18)	0.77926 (15)	0.0396 (5)
C3	-0.0852 (4)	0.1370 (2)	0.68124 (17)	0.0481 (5)
C4	-0.3018 (5)	0.0324 (2)	0.6889 (2)	0.0597(6)
H4	-0.3937	-0.0163	0.6236	0.072*
C5	-0.3839 (5)	-0.0011 (2)	0.7909 (2)	0.0655 (7)
H5	-0.5314	-0.0710	0.7942	0.079*
C6	-0.2461 (4)	0.0697 (2)	0.88872 (19)	0.0534(6)
Н6	-0.2976	0.0464	0.9582	0.064*
C7	-0.0169 (4)	0.3000 (2)	1.05958 (16)	0.0502(6)
C8	0.1749 (4)	0.3738 (3)	1.15994 (17)	0.0560(6)
H8A	0.3676	0.3570	1.1608	0.067*
H8B	0.1734	0.4699	1.1529	0.067*
C9	0.0814 (5)	0.3293 (2)	1.26929 (17)	0.0545 (6)
H9A	-0.1128	0.3442	1.2677	0.065*

Н9В	0.0872	0.2336	1.2772	0.065*
C10	0.2680 (4)	0.4050(2)	1.36885 (16)	0.0481 (5)
C11	0.2885 (4)	0.3245 (2)	0.77306 (18)	0.0518 (5)
H11A	0.4581	0.2888	0.7655	0.062*
H11B	0.3218	0.3797	0.8409	0.062*
H11C	0.2361	0.3778	0.7088	0.062*
C12	-0.0018 (6)	0.1712 (3)	0.56799 (19)	0.0684(7)
H12A	0.1952	0.1644	0.5709	0.082*
H12B	-0.0329	0.2615	0.5500	0.082*
H12C	-0.1144	0.1096	0.5109	0.082*
N1	0.1111 (3)	0.24747 (17)	0.98335 (13)	0.0432 (5)
H1N	0.295 (6)	0.262(2)	0.998 (2)	0.052*
O1	-0.2754 (3)	0.2922 (2)	1.05008 (14)	0.0823 (7)
O2	0.4948 (4)	0.3603 (2)	1.40631 (16)	0.0769 (6)
H2O	0.538 (7)	0.397(3)	1.472 (3)	0.092*
O3	0.2004 (4)	0.50537 (19)	1.40937 (15)	0.0762 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0239 (9)	0.0495 (10)	0.0406 (9)	0.0034(7)	-0.0001 (7)	-0.0042 (7)
C2	0.0310 (10)	0.0455 (10)	0.0418 (10)	0.0092 (7)	0.0022 (7)	-0.0021 (7)
C3	0.0462 (12)	0.0536 (11)	0.0440 (11)	0.0177 (9)	-0.0027(8)	-0.0079(8)
C4	0.0548 (14)	0.0571 (12)	0.0587 (13)	0.0069 (10)	-0.0133 (10)	-0.0185 (10)
C5	0.0453 (13)	0.0560 (12)	0.0837 (16)	-0.0122 (10)	-0.0043 (11)	-0.0092 (11)
C6	0.0394 (11)	0.0598 (12)	0.0556 (12)	-0.0062 (9)	0.0045 (9)	0.0024 (9)
C7	0.0230 (9)	0.0834 (14)	0.0413 (10)	0.0000(8)	0.0041 (7)	-0.0105 (9)
C8	0.0285 (10)	0.0906 (16)	0.0439 (11)	-0.0054(9)	0.0051 (8)	-0.0160 (10)
C9	0.0400 (11)	0.0723 (14)	0.0469 (11)	-0.0019 (9)	0.0045 (8)	-0.0115 (9)
C10	0.0388 (11)	0.0676 (13)	0.0375 (10)	0.0039 (9)	0.0089(8)	-0.0060 (9)
C11	0.0449 (12)	0.0574 (12)	0.0525 (11)	0.0008 (9)	0.0124 (9)	0.0030 (9)
C12	0.0806 (18)	0.0824 (16)	0.0441 (12)	0.0265 (13)	0.0034 (11)	-0.0066 (10)
N1	0.0196 (8)	0.0677 (11)	0.0391 (8)	-0.0010(7)	0.0026 (6)	-0.0072 (7)
O1	0.0220(8)	0.1555 (19)	0.0645 (10)	0.0054 (9)	0.0015 (7)	-0.0449 (11)
O2	0.0544 (11)	0.1007 (14)	0.0710 (11)	0.0252 (9)	-0.0140 (8)	-0.0343 (10)
O3	0.0715 (12)	0.0869 (12)	0.0660 (11)	0.0300 (10)	-0.0155 (9)	-0.0277 (9)

Geometric parameters (Å, °)

C1—C6	1.387 (3)	C8—H8A	0.9700
C1—C2	1.394 (3)	C8—H8B	0.9700
C1—N1	1.425 (2)	C9—C10	1.499 (3)
C2—C3	1.402 (3)	C9—H9A	0.9700
C2—C11	1.498 (3)	С9—Н9В	0.9700
C3—C4	1.385 (3)	C10—O3	1.227 (3)
C3—C12	1.507 (3)	C10—O2	1.261 (3)
C4—C5	1.376 (4)	C11—H11A	0.9600
C4—H4	0.9300	C11—H11B	0.9600
C5—C6	1.384 (3)	C11—H11C	0.9600

C6—H6 C7—O1 1.227(2) C12—H12B 0.9600 C7—O1 1.227(2) C12—H12C 0.9600 C7—N1 1.334(3) N1—H1N 0.87(3) C7—C8 1.508(3) C2—H2O 0.85(3) C8—C9 1.508(3) C6—C1—C2 1.21.34(18) H8A—C8—H8B 108.0 C6—C1—C1 119.13(17) C10—C9—C8 111.26(17) C2—C1—N1 119.13(17) C10—C9—H9A 109.4 C1—C2—C3 118.49(18) C3—C2—H9A 109.4 C3—C2—C11 120.48(17) C3—C2—H9B 109.4 C3—C2—C11 120.48(17) C3—C2—H9B 109.4 C3—C2—C11 120.48(17) C3—C3—C12 119.9 (2) 0.3—C10—O2 123.04(19) C3—C3—C3—C12 119.9 (2) 0.3—C10—O2 123.04(19) C3—C4—H4 119.3 C2—C11—H11A 109.5 C3—C4—H4 119.3 C2—C11—H11B 109.5 C3—C4—H4 119.3 C2—C11—H11B 109.5 C4—C5—C6 119.8 (2) H11A—C11—H11C 109.5 C4—C5—C6—C1 119.5 (2) H11A—C11—H11C 109.5 C6—C5—H5 120.1 C3—C4—H11B 109.5 C6—C6—C1 119.5 (2) H11A—C11—H11C 109.5 C6—C6—C1 119.5 (2) H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11A—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12B 109.5 C1—C7—N1 123.30 (18) H12A—C12—H12C 109.5 C1—C7—C8 110.2 (18) C1—C7—C8 110.2 (19) C5—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C7—C8—H8B 109.4 C7—N1—H1N 115.0 (16) C1—C2—C3 178.85 (16) N1—C1—C6—C5 179.77 (19) C6—C1—C2—C1 179.77 (19) C1—C2—C3—C1 179.77 (19) C1—C2—C3—C4 11.4 (4) Whydrogen-bond geometry (Å, °) D—HA D—HA D—HA D—HA D—HA D—HA D—HA	C5—H5	0.9300	C12—H12A		0.9600
C7—O1	С6—Н6				
C7—N1	C7—O1	1.227 (2)	C12—H12C		0.9600
C7—C8					
C8—C9					
C6—C1—N1					()
C6—C1—N1	C6—C1—C2		H8A—C8—H8B		108.0
C2—C1—N1					
C1—C2—C3					
C1—C2—C11					
C3—C2—C11 C4—C3—C2 C4—C3—C2 C4—C3—C12 C4—C3—C12 C4—C3—C12 C4—C3—C12 C5—C4—C3 C12 C5—C4—C3 C12 C5—C4—C3 C12 C5—C4—C3 C12 C5—C4—C3 C5—C4—C3 C5—C4—C3 C5—C4—H4 C19 C5—C4—H4 C19 C5—C4—H4 C19 C5—C4—H4 C19 C5—C4—H4 C19 C5—C4—H4 C19 C5—C6 C19 C5—C6—C6 C19 C6—C5—C6 C19 C6—C5—C6 C19 C6—C5—C6 C19 C6—C5—C6 C19 C6—C5—C6 C19 C6—C1 C19 C6—C6—C1 C19 C19 C19 C19 C19 C19 C19 C19 C19 C		` ′			
C4—C3—C2 119.54 (19) H9A—C9—H9B 108.0 C4—C3—C12 119.9 (2) O3—C10—O2 123.04 (19) C2—C3—C12 120.5 (2) O3—C10—C9 120.7 (2) C5—C4—C3 121.38 (19) O2—C10—C9 116.29 (19) C5—C4—H4 119.3 C2—C11—H11B 109.5 C3—C4—H4 119.3 C2—C11—H11B 109.5 C4—C5—C6 119.8 (2) H11A—C11—H11C 109.5 C4—C5—H5 120.1 C2—C11—H11C 109.5 C6—C5—H5 120.1 H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12B 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 O1—C7—N1 123.30 (18) H12A—C12—H12B 109.5 O1—C7—C8 120.46 (18) C3—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12A—C12—H12C 109.5 C9—C8—H8A 109.4 <td></td> <td></td> <td></td> <td></td> <td></td>					
C4—C3—C12					
C2—C3—C12					
C5—C4—C3					
CS—C4—H4 119.3 C2—C11—H11A 109.5 C3—C4—H4 119.3 C2—C11—H11B 109.5 C4—C5—C6 119.8 (2) H11A—C11—H11B 109.5 C4—C5—H5 120.1 C2—C11—H11C 109.5 C6—C5—H5 120.1 H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12A 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 C1—C7—C8 120.46 (18) C3—C12—H12C 109.5 C1—C7—C8 110.46 (18) C3—C12—H12C 109.5 C2—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C2—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C2—C8—H8A 109.4 C7—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C7—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—02—H2O 101 (2) C6—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -1.79.77 (19) C6—C1—C2—C11 -0.7 (3) N1—C1—C6—C5 -1.79.77 (19) C6—C1—C2—C11 -0.7 (3) N1—C1—C2—C11 -0.7 (3) N1—C1—C2—C11 -0.7 (3) N1—C1—C2—C11 -0.7 (3) S5.5 (3) C1—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -0.1 (4) C2—C1—N1—C7 -13.1 (2) C4—C5—C6—C1 -1.4 (4)					
C3—C4—H4					
C4—C5—C6 119.8 (2) H11A—C11—H11B 109.5 C4—C5—H5 120.1 C2—C11—H11C 109.5 C6—C5—H5 120.1 H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12A 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 O1—C7—N1 123.30 (18) H12A—C12—H12B 109.5 O1—C7—C8 120.46 (18) C3—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12A—C12—H12C 109.5 C9—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
C4—C5—H5 120.1 C2—C11—H11C 109.5 C6—C5—H5 120.1 H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12A 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 O1—C7—N1 123.30 (18) H12A—C12—H12B 109.5 O1—C7—C8 120.46 (18) C3—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12A—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12B—C12—H12C 109.5 C9—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8B 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—O1—C2—H2O 101 (2) C6—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -1.0 (3) N1—C1—C2—C3					
C6—C5—H5 120.1 H11A—C11—H11C 109.5 C5—C6—C1 119.5 (2) H11B—C11—H11C 109.5 C5—C6—H6 120.3 C3—C12—H12A 109.5 C1—C6—H6 120.3 C3—C12—H12B 109.5 O1—C7—N1 123.30 (18) H12A—C12—H12B 109.5 O1—C7—C8 120.46 (18) C3—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12A—C12—H12C 109.5 C9—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8BA 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—02—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C					
C5—C6—C1					
C5—C6—H6					
C1—C6—H6					
01—C7—N1 123,30 (18) H12A—C12—H12B 109.5 01—C7—C8 120,46 (18) C3—C12—H12C 109.5 N1—C7—C8 116,23 (16) H12A—C12—H12C 109.5 C9—C8—C7 111,27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125,13 (16) C7—C8—H8A 109.4 C7—N1—H1N 115,0 (16) C9—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C31 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C11—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -179.7 (2) C6—C1—N1—C7					
O1—C7—C8 120.46 (18) C3—C12—H12C 109.5 N1—C7—C8 116.23 (16) H12A—C12—H12C 109.5 C9—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C31 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C11—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—NI—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—NI—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—NI—C7 <td></td> <td></td> <td></td> <td></td> <td></td>					
N1—C7—C8					
C9—C8—C7 111.27 (17) H12B—C12—H12C 109.5 C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C311 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -0.8 (4) C2—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 130.1 (2) C4—C5—C6—C1 1.4 (4)					
C9—C8—H8A 109.4 C7—N1—C1 125.13 (16) C7—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 -51.1 (3) C4—C5—C6—C1 1.4 (4)					
C7—C8—H8A 109.4 C7—N1—H1N 115.0 (16) C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 -51.1 (3) C4—C5—C6—C1 1.4 (4)					
C9—C8—H8B 109.4 C1—N1—H1N 119.8 (16) C7—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 -51.1 (3) C4—C5—C6—C1 1.4 (4) C2—C1—N1—C7 130.1 (2)					
C7—C8—H8B 109.4 C10—O2—H2O 101 (2) C6—C1—C2—C3 0.1 (3) C2—C1—C6—C5 -1.0 (3) N1—C1—C2—C3 178.85 (16) N1—C1—C6—C5 -179.77 (19) C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 130.1 (2)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
N1—C1—C2—C3 C6—C1—C2—C11 N1—C1—C2—C11 N1—C1—C2—C11 N1—C1—C2—C11 N1—C1—C2—C11 O.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C1—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C1—C2—C3—C4—C5 -0.1 (3) C1—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -0.8 (4) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 130.1 (2) Hydrogen-bond geometry (Å, °)					
C6—C1—C2—C11 -179.43 (19) O1—C7—C8—C9 49.2 (3) N1—C1—C2—C11 -0.7 (3) N1—C7—C8—C9 -131.8 (2) C1—C2—C3—C4 0.4 (3) C7—C8—C9—C10 -178.67 (19) C11—C2—C3—C4 180.00 (19) C8—C9—C10—O3 95.5 (3) C1—C2—C3—C12 -179.90 (18) C8—C9—C10—O2 -83.7 (3) C11—C2—C3—C12 -0.4 (3) O1—C7—N1—C1 -0.3 (4) C2—C3—C4—C5 -0.1 (3) C8—C7—N1—C1 -179.29 (19) C12—C3—C4—C5 -179.7 (2) C6—C1—N1—C7 -51.1 (3) C3—C4—C5—C6 -0.8 (4) C2—C1—N1—C7 130.1 (2) Hydrogen-bond geometry (Å, °)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					` ′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
C12—C3—C4—C5		* *			
C3—C4—C5—C6					
C4—C5—C6—C1 1.4 (4) <i>Hydrogen-bond geometry (Å, °)</i>					` '
Hydrogen-bond geometry (Å, °)			C2—C1—N1—C/		130.1 (2)
	C4—C5—C6—C1	1.4 (4)			
$D \!$	Hydrogen-bond geometry (Å, °)				
	<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H\cdots A$	D··· A	D— H ··· A

N1—H1N···O1 ⁱ	0.87 (3)	2.04(3)	2.909 (2)	174 (2)
O2—H2O···O3 ⁱⁱ	0.85(3)	1.90 (4)	2.679 (2)	152 (3)

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+3.

Fig. 1

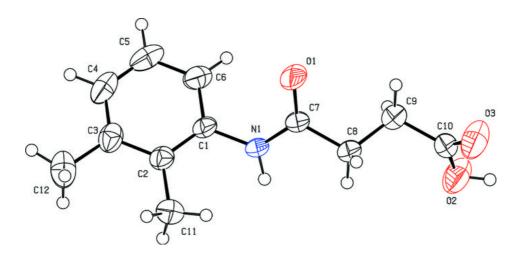
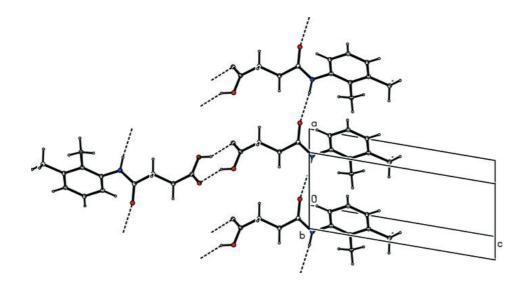



Fig. 2

